

Use of CoAsT for Small Water Systems ©

Fernando Cadena, Peter Nathanson, Abbas Ghassemi. WERC/NMSU/As Partnership

CoAsT Objectives

- ☐ Integrate arsenic tools
- User-friendly, readily available and free
- □ Geared to small communities, decision makers and design engineers
- Tailored to the user's needs

GOAL: Provide help selecting the right tools for the job!

3

CoAsT Integration

- What is the optimal technology?
 - Decision Tree
- How much does it cost and how does it compare against other technologies?
 - Cost models
- ☐ How do we pay for it?
 - □ Rate setting program
- Where do we get additional information
 - Living documentation

Living Document

Living Document Content

- □ Arsenic Water Technology Partnership
- □ Federal, State(s) Regulations
- ☐ Health Effects
- □ Arsenic Chemistry
- **□** References
- □ Appropriate Links

Decision Trees (Based on EPA Criteria found in EPA 816-R-03-014)

AwwaRF/SNL/WERC Arsenic Partnership

Content in Decision Trees

- ☐ Tree 1
 - Non-Treatment and Treatment Minimization
- ☐ Tree 2
 - □ Pre-Oxidation
 - **Existing Treatment Enhancements**
- ☐ Tree 3

Tree 1- Non-Treatment and Treatment Minimization

- □ Alternate Source
- □ Seasonal Use
 - Seasonal Back-up Use Calculator (based on concentrations)
- Blending
 - Water Blending Calculator (based on flows and concentrations)
- - Specialized Version of Blending

Tree 2 — Pre-Oxidation, Using Existing Treatment

- □ Pre-Oxidation Processes
 - □ Chlorine
 - □ Permanganate
 - □ Ozone
 - Solid Phase Oxidants
- Enhancing Existing Treatment Technologies
 - □ Tree 2a Coagulation/Filtration
 - ☐ Tree 2b Lime Softening
 - □ Tree 2c − Iron and Manganese Filtration

Tree 3 — New Treatment Technologies

- □ Source Water Chemistry
- □ Tree 3a − Ion Exchange Processes
- □ Tree 3b − Sorption Processes
- □ Tree 3c − Filtration and Membrane Processes
- ☐ Centralized vs. POU/POE

Cost Models

Cost Models Available in CoAsT

- AwwaRF
- **ARCE**
- □ POU
- Other technologies (under development)

AwwaRF Model Background

- Developed by Malcolm Pirnie, Inc. and University of Colorado for AwwaRF
- Adsorption media and Activated Alumina
- □ 10<Q<3,500 gpm (0.014<Q<5.04 MGD)
- ☐ Available to AwwaRF subscribers only

ARCE Model Background

- Developed by Battelle NL for EPA NRMRL/ORD
- Adsorption Media, Activated Alumina and Ion Exchange
- □ 0.7<Q<347 gpm (0.001<Q<0.50 MGD)

O&M Cost Highlights

- □ Predictive based on water chemistry (AwwaRF)
- Empirical: based on field studies (AwwaRF, ARCE)
 - □ Pilot, or
 - □ RSSCT, or
 - Manufacturer

q =x/m or BV

Capital Costs Highlights

- AwwaRF uses polynomial equation to compute capital cost line items:
 - $\Box Cost = a + bQ + cQ^2 + dQ^3 + eQ^f$
- ☐ ARCE estimates capital cost of each individual component (pumps, tanks, piping, etc.)

Establishing a Solid Financial Structure

Rate Setting Structure

- Program based on the Rural Community Assistance Corporation (RCAC) procedures
- □ Proven spreadsheet that presently requires RCAC personnel assistance

CoAsT Objective

- Convert spreadsheet to web-based, user-friendly tool
- Allow small communities to set their own rate structures to meet capital and operational expenses obtained through cost models

Q and A

http://wercstation.nmsu.edu:8080/arsenic/AsTree.dsb

- □ Contacts
 - <u> fcadena@nmsu.edu</u>
 - □ ptn@nmsu.edu